DOI: <u>https://doi.org/10.53486/cike2024.09</u> UDC: 004.8:657.01

BASIC DIRECTIONS FOR THE USE OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN THE TRANSPORTATION AND LOGISTICS SECTOR

PUGACHEVA OLGA

PhD, Associate Professor, Department of Economic Informatics, Accounting and Commerce Francisk Skorina Gomel State University Gomel, Belarus <u>OPugacheva@gsu.by</u> ORCID ID: 0000-0003-4554-0038

Abstract: The article investigates the issues of using artificial intelligence technologies in the field of transportation and logistics in order to find effective solutions for their implementation. Based on the available data in this area, the main directions of development of transportation and logistics based on artificial intelligence, their characteristics and examples of implementation of technological solutions are considered, the main effects from the application of AI solutions are given.

It is shown that AI technologies are used in key processes of passenger and cargo transportation, traffic flow and road infrastructure management, and customer interaction. The development of AI in the industry corresponds to the global dynamics of the world technological development of the industry - these are the technologies of autonomous movement that can completely change the whole face of both personal mobility and passenger and cargo transportation in all modes of transportation.

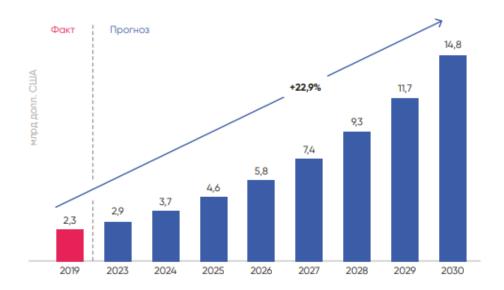
Research reveals that in the field of AI applications for transportation and logistics, solutions based on computer vision technology are developing to the greatest extent. This is explained by the industry specifics, characterized by a high demand for solutions aimed at road safety, support of road service activities, photo and video recording of violations, control of resource consumption, and monitoring of harmful emissions reduction. The demand for computer vision technologies is also expected to continue to grow due to the implementation of large-scale projects in the field of unmanned transportation.

In addition, the vector of transport and logistics industry development is aimed at the formation of "smart" transport infrastructure (seaports, air harbors, railway system, etc.), which are fully automated facilities based on AI, Internet of Things, big data, blockchain, and other technologies.

Based on the results of the study, it is concluded that the considered directions of using AI technologies in the transport and logistics sphere contribute to improving the efficiency, safety and sustainability of transportation systems.

Keywords: artificial intelligence, machine learning, technology, transportation, logistics JEL Classification: O32, C45, L86, R41

1 Introduction


The relevance of the research is determined by the need to find effective solutions in the field of transportation and logistics based on artificial intelligence technologies in order to stimulate their use.

The development of the domestic economy is largely determined by the effective operation of the transportation and logistics sphere, which provides connectivity of economic entities within

the country and interaction with international partners. High-quality management of transportation and logistics processes can increase operational performance, reduce costs and improve the competitiveness of companies in the transportation industry. Modern challenges and reorientation of trade operations and passenger flows faced by transportation and logistics companies determine the need to develop effective solutions in the implementation of logistics operations. New trends in the industry related to the development of electric vehicles, the development of unmanned vehicles, multimodal, intermodal, transmodal transportation, robotization and the application of innovative technologies require a high level of data integration, the use of advanced information systems and technologies for processing large volumes of information. Digital transformation and accompanying artificial intelligence (hereinafter - AI) technologies are able to move the transportation industry and individual processes in companies to a qualitatively new technological level and a new stage of operational efficiency, to reduce transportation and logistics costs.

Artificial intelligence is a set of technological solutions that allows imitating human cognitive functions (including self-learning and search for solutions without a predetermined algorithm) and obtaining, when performing specific tasks, results comparable, at least, with the results of human intellectual activity (Pugacheva, 2023, p. 209).

The indicators of the global AI market volume for transportation and logistics and the growth of the global AI solutions market by 2030 are given in Figure 1 (Application of artificial intelligence in priority sectors of the economy, 2023).

Figure 1 Global AI for transportation and logistics market size and growth figures for the global AI solutions market by 2030

Source: based on Interindustry Technology Transfer Center (2023)

2 The main directions of development of transportation and logistics based on AI technologies see the size of headings

Let us consider the main directions of development of the sphere of transportation and logistics, in which the application of AI technologies is of great importance.

The key directions of development of the sphere of transport and logistics on the basis of AI, their characteristics and examples of implementation of technological solutions are given in Table 1: what paragraph indentation (Artificial Intelligence in Transportation, 2024).

Table 1 Directions, characteristics and examples of implementation of AI-based technological solutions in the sphere of transportation and logistics

technological solutions in the sphere of	technological solutions in the sphere of transportation and logistics	
Characteristics	Examples	
1 Development of autonomo	ous transportation	
1.1 Autonomous transportation by passenger transport		
Advances in sensor, wireless communication, and	The Russian company Yandex has	
machine learning technologies are enabling	moved to the final stage of testing	
vehicles to more accurately recognize their	driverless unmanned cars with the	
environment and make complex decisions in real	potential for use in various areas:	
time. In autonomous vehicles, AI technologies are	freight transportation, "last mile"	
applied in perception, localization, decision	(delivery of orders to the final	
making, feedback, and control of vehicle control.	customer), and cabs.	
Autonomous mobility is predicted to improve	Waymo (Alphabet) is developing and	
safety and reduce accidents, fuel efficiency,	testing unmanned driving technologies	
productivity, and change the urban landscape. The	in the US. In addition to Waymo, Tesla	
large-scale deployment of autonomous vehicles	and a number of Chinese brands have	
raises a set of challenges, in the areas of	their own autonomous cars.	
cybersecurity, legal regulation (especially of cross-		
border transportation) and liability in case of		
accidents and incidents, as well as changing		
insurance models.		
1.2 Autonomous Freight	Transportation	
In the transport and logistics industry, there is a	In Russia, unmanned KAMAZ trucks	
trend towards the development of autonomous	were launched in 2023 to transport	
systems for freight transportation, capable of	commercial cargo on the M-11 highway.	
increasing the efficiency of logistics operations,	The vehicles are equipped with	
reducing the cost of transportation by reducing	communication, navigation, vision, and	
labor costs and optimizing fuel costs. This is	incoming information processing	
especially relevant in the context of the growing	systems.	
shortage of necessary personnel in the labor market	TuSimple (USA) offers a solution of	
and rising transportation costs. Autonomous	autonomous freight transportation	
transportation requires the realization of certain	network (AFN - Autonomous Freight	
conditions: high-quality digital maps and	Network). It has developed autonomous	
geographic data, coverage of roads with high-	trucks based on an AI and sensor-based	
speed communications, sensor systems and road	platform.	
safety infrastructure. The implementation of	Several trips without human presence	
unmanned freight transportation differs from	or intervention have been realized in	
passenger autonomous mobility in terms of	China and Japan. The trucks are	
infrastructure requirements, the need for	capable of navigating urban and	

dimensioning and medical control contact	
dimensioning and payloads, control systems,	intercity roads in different weather
safety and logistics management processes.	conditions, taking into account the
	operation of traffic lights and lanes.
1.3 Autonomous delivery by	
Robots equipped with AI systems and mobile	In 2021, postal operator Russian Post
platforms can deliver goods directly to the	launched a parcel delivery project using
consumer's door, providing a more convenient	Yandex's unmanned robots in Moscow.
service. The use of unmanned aerial vehicles	In 2024, California-based Vayu
(drones) to deliver goods is evolving, which is	Robotics unveiled its first robot courier.
especially relevant in remote areas or in	Robot One can follow store employees
environments where traditional means of	as they load customers' orders and then
transportation have very low efficiency. The	navigate city streets on its own to
advantages of drones are: the ability to fly completely	deliver goods. The robot is designed to
autonomously, avoiding obstacles; the availability of	drive on roads as well as bike paths,
live video streaming; and real-time recording of	sidewalks and inside stores. An
drone location, status, altitude, and speed.	artificial intelligence model for
Routing algorithms in AI-powered autonomous	autonomous robotics called Vayu Drive
robots can improve routes based on various factors	processes various types of data, such as
such as traffic, time of day, and customer	images, text instructions and route data,
preferences. Machine learning technologies	and makes decisions about the robot's
provide more accurate prediction of delivery	actions based on this information.
demand, which helps optimize inventory and lead	
times. Sensors and IoT devices can track and	
monitor transportation conditions such as	
temperature, humidity, and cargo condition.	
Retailers, postal services, and marketplaces are the	
most interested in these technologies.	
1.4 Unmanned specializ	zed transport
Autonomous Specialized Transport (AST) uses AI	Russian company Cognitive Robotics
and automatic control technologies to perform	develops autonomous control systems
tasks without human intervention. One of the main	for special vehicles for agriculture -
benefits of such transportation is increased	Cognitive Agro Pilot. The technology is
efficiency and productivity. Autonomous vehicles	capable of autonomously performing a
can operate around the clock, allowing companies	wide range of agricultural operations:
to reduce personnel costs and increase production.	tillage, cultivation, sowing, spraying,
AST can be safer than traditional modes of	fertilizing, harvesting grass, tilled
transportation. It is equipped with advanced safety	crops, while ensuring high accuracy of
systems that avoid human error. The large number	trajectory following and safety.
of sources of analyzed information allows for	
better operations than manual operator control,	
such as more efficient harvesting or warehousing	
of finished products.	
1	

2 Using AI for customer interaction	
One way to realize this trend is through the use of	The Russian airline S7 uses a chatbot
chatbots. Chatbots can be useful for automating	that allows to purchase, exchange, and
communication with customers, for example, to	surrender a flight ticket, clarify the
provide information on the status of a shipment	status and schedule, and get advice on
delivery or vehicle tickets. Another way AI is	transportation rules. The
being used in the transportation and logistics	implementation of the solution has
	reduced contact center support costs by
industry is to process data using optical character recognition and natural language processing.	
	35%. About 70% of customer requests
Optical character recognition can be used to	are processed automatically.
recognize text on documents, such as invoices or	
bills of lading. This can help companies speed up	
document processing and improve data accuracy.	
3 Technologies for integrating vehicles and i	
dynamic information	
Development of connected car techn	
Connected Car technologies enable	The Connected Car technology of the
interoperability between different vehicles (V2V -	Russian Telematica concern is
Vehicle-to-Vehicle), vehicles and infrastructure	currently being tested on the smart
(V2I - Vehicle-to-Infrastructure), and the overall	central ring road. V2X solutions of
technological environment around transportation	Russian development allow to receive
systems (V2X - Vehicle-to-Everything). AI plays	actual data on the road situation in real
an important role in these technologies, enhancing	time. The system receives information
their functionality and enabling more efficient and	from traffic cameras and sensors about
intelligent interactions in transportation systems. It	weather conditions, accidents, traffic
is involved in big data processing and analysis,	density, congestion and obstacles on the
pattern recognition and sensor interpretation,	road.
decision-making systems, autonomous driving	
systems, and warning and safety systems.	
4 Smart transporta	tion hubs
4.1 Smart airg	port
A smart airport is an airport concept in which	Russia's Sheremetyevo Airport has
advanced technologies are used to improve	implemented an AI-based "digital
operational efficiency, ensure passenger safety and	twin" system that performs simulation
optimize resource management. This concept	modeling of all key processes
emphasizes technologies such as the Internet of	(passenger flows, aircraft maintenance,
Things (IoT), AI, data analytics, biometrics and	cargo flows, etc.) a year or more ahead.
others. IoT sensors and devices monitor the	- ' •
condition of equipment, air quality, and noise	
levels, while biometric technologies are used for	
identification at access, to enhance security and	
speed up the process of passing through	
speed up the process of passing through	

checkpoints. Machine learning algorithms analyze	
flight, passenger and baggage data for predictive	
analytics of possible failures and resource	
optimization, in managing various aspects of	
operations such as staff allocation, flight service	
coordination and infrastructure optimization. The	
technological structure of a smart airport also	
includes robots and automated vehicles, energy	
management systems, and various mobile	
applications for passengers and staff.	
4.2 Smart Po	rt
A smart port is a fully automated port where AI,	The Port of Xiamen (China) launched
big data, blockchain and Internet of Things	the "Smart Port 2.0" platform in 2020,
technologies are combined in a centralized system.	which includes the application of low-,
They address the challenges of monitoring, data	medium- and high-frequency 5G
collection and analysis, process optimization,	networks, unmanned container ships,
decision-making assistance, improving efficiency,	high-precision positioning and multi-
productivity, safety, environmental friendliness	sensor control of the Beidou navigation
and reducing the likelihood of human error. The	system. This solution is characterized
role of AI in a smart port is to manage the	by low investment, short construction
movement of ships and other transport in the port	time, environmental friendliness and
area, forecasting the need for resources and	wide applicability.
parking time, and optimizing routes. Internet of	wide applicability.
Things systems conduct constant monitoring of the	
state of infrastructure, port equipment, cranes, ship	
movements, water levels, etc. In addition, the smart	
port includes information systems of various	
classes, such as automated container terminals,	
unmanned vehicles, biometrics, digital platforms	
and energy-saving technologies.	
4.3 Smart railroad and r	
Smart railroad and railway station is a concept of	Using the Cognitive Rail Pilot platform
developing railway infrastructure using modern	on the Russian railroad allows using
technologies to improve efficiency, safety, and	vision and artificial intelligence to
sustainability, as well as to provide a more	detect objects on the railroad, including
comfortable environment for passengers. AI is	other trains, switches, tracks, people,
used here to manage train movements, optimize	traffic lights, etc. The complex can
train speeds and intervals, and enhance adaptation	assess the situation, issue danger
to changing conditions along the route to improve	warning signals to the driver, make
transportation efficiency. AI and big data enable	necessary decisions in case of his/her
the collection and analysis of data on track	lack of reaction, and is also capable of
condition, equipment, weather conditions and	ensuring safety in any weather.
· 1 1 /	

other factors, which can be used to predict	
maintenance needs, replace equipment, minimize	
train downtime and reduce the likelihood of	
accidents. At the railway station, AI plays an	
important role in ensuring control and safety,	
monitoring passenger flow, providing personalized	
service, improved ticket management, and	
efficient management of energy consumption,	
lighting and climate at the station.	
5 Robotization and automation of	warehouse management
Various digital technologies are being used to	Russia's X5 Group, which operates the
digitalize the warehouse: AI, IoT, digital twin,	Pyaterochka, Perekrestok and Karusel
automation and data analytics. Smart warehouses	retail grocery store chains, is using
are equipped with various types of sensors such as	Geek+S20 sorting robots in a number of
RFID tags, temperature, humidity sensors, as well	its distribution centers from 2019.
as devices to track the location of goods and	
equipment in the warehouse, which can monitor	
the condition of goods, the environment and the	
operation of equipment in real time. AI is used for	
demand forecasting, as well as for route	
optimization, sorting and distribution. Robots play	
an important role in this concept, which are used to	
automate processes such as sorting goods, packing,	
inventory and moving goods around the	
warehouse. Warehouse management systems	
(WMS) are being developed, including those with	
1 /	
technologies to effectively manage all aspects of	
warehouse operations from receiving goods to	
shipping.	
6 Using AI for drivi	° •
AI technologies are actively used to ensure the	In Russia, video analytics from MTS
safety of traffic and vehicle operation. Video-	(Skai) analyzes the driver's behavior
analytics systems of driver's condition (the system	when the vehicle is moving, and having
detects distractions, driver's drowsiness, which	detected a dangerous condition or
makes it possible to prevent road accidents due to	behavior, the system immediately
driver's inattention) are actively spreading, and	warns the driver with an audio/graphic
they are also used for traffic monitoring and fixing	signal and voice notification (regardless
violations of traffic rules. In addition, telemetry	of the availability of communication)
technologies are used in freight forwarding and	and sends information about the event
commercial transportation to monitor driver's	to the secure "cloud" SKAI.
driving style and risk profile, and to reconstruct the	

ГГ	
circumstances of a road accident. The data	
obtained can be used to warn the driver, as well as	
for automated calculation of insurance costs.	
7 Intelligent Transport Sys	
AI is being actively used to optimize transportation	In Russia, as part of the national
infrastructure. Modern video analytics systems,	project "Safe and Quality
connected cars and IoT systems make it possible to	Highways", AI solutions in the field
analyze data on traffic flows, including information on	of traffic flow management are
speed, traffic density and congestion. Using this data	being widely implemented.
in intelligent transport systems allows for more	
efficient traffic management on roads: controlling the	
operation mode of traffic lights is one of the most	
effective ways to optimize traffic flow.	
8 AI and predictive analytics in transp	oortation and logistics
8.1 Logistics planning and rout	e optimization
To allocate resources and manage vehicles,	Built for Alibaba (China), UPS and
transportation companies use special routing	project44's "Ware2Go" platform
algorithms that are based, among other things, on	solves the problem of close tracking
predictive analytics using machine learning. Such	and logistics coordination by
systems for solving routing tasks are capable of	connecting 25,000 e-commerce
learning from data on traffic, weather conditions and	companies, offering logistics
other factors to make independent decisions on when	companies smart routing and sorting
and where to send vehicles, what are the ways to	services, and providing brands with
optimize planning and how to organize the	integrated warehousing solutions.
performance of a particular transportation by the	
required mode of transport. Such systems provide	
comprehensive transportation planning and execution	
capabilities, including fare management, load	
planning and automated selection of the most	
appropriate carrier.	
8.2 Demand forecas	ting
AI-powered demand forecasting in transportation and	Novo Forecast Enterprise software
logistics helps in planning and optimizing the	product - allows FMCG and DIY
performance of complex transportation systems.	companies, as well as distributors to
Predictive analytics with AI can more accurately	produce and purchase exactly as
predict demand for transportation services depending	much goods as they will be able to
on various factors such as time of day, weather, and	sell, minimizing shortages and
holidays, as well as plan their resources more	inventory costs. High forecast
efficiently, reduce costs, and improve customer	accuracy is achieved through the use
service. Demand forecasting methods include the use	of Big Data technologies and ML
of neural networks that are trained on demand data,	algorithms. This allows companies
machine learning algorithms (regression analysis,	to create accurate demand plans,

decision trees) and statistical methods (correlation	align them with financial goals, and
analysis, time series).	optimize supply chain operations.
8.3 Dynamic prici	
The use of AI-based technologies allows for more accurate forecasting of supply and demand: machine learning algorithms and statistical model building are used, working with observational data, based on which the system/algorithm in an automated format adjusts prices for transportation services in response to changes in external factors important to the company.	The dynamic pricing system developed by Uber (USA) adjusts fares based on a number of variables such as route time and distance, traffic and current demand between drivers. This ensures that there will always be enough drivers on the road, even during peak hours when demand and prices are more likely to increase.
9 AI in vehicle shering systems and in persona	al mobility equipment (PME)
AI is used in the shearing industry to improve management processes and service delivery: in demand forecasting, technical condition monitoring, automatic transportation allocation, risk and safety management. One of the promising areas of electric transportation development is AI in PME, which include: electric scooters, electric skateboards, gyroscooters, segways, monowheels and other similar devices. In the field of PME shearing, AI has gained the most traction by improving the use of electric scooters and enhancing road safety. For instance, AI can be used in CCTV cameras to detect violations committed on PME. These devices predominantly work similarly to complexes that record violations by motorists by recognizing vehicle license plates.	A system with traffic cameras capable of detecting traffic violations by PME operators has been tested in Moscow. The devices work on the most popular routes and in places where accidents involving PMEs are concentrated, recognizing three violations: riding off the cycle track and driving in the oncoming lane of the cycle track, driving on PMEs on a crosswalk and driving on one scooter with two people. Spin Insight Level 2 solution developer Drover AI specializes in using IoT artificial intelligence to optimize last-mile transportation services in electric scooters, giving people convenient and fast access from subway stations or public transportation stops to their places of work or residence. The PathPilot platform, using machine learning and computer vision technologies, detects improper sidewalk riding
10 Digital model of the su	and parking of electric scooters.
Digital supply chain model using AI is an innovative approach to managing and optimizing supply chain	Cainiao (China) is working with Procter&Gamble (USA) to develop
approach to managing and optimizing suppry chain	1 Iociera Gamble (USA) to develop

processes. It allows tracking and optimizing logistics	the Green Supply Chain digital
processes in real time, which helps improve efficiency	supply chain system. The system
and reduce costs. Intelligent analysis of aggregated	covers and manages the logistics
data allows making an optimal set of decisions for	process from purchase to delivery to
each stage of the logistics process: forecasting	the consumer. Green Supply Chain
demand, dynamically adjusting the price for services,	is one of the components to achieve
choosing the optimal mode of transport and route for	Alibaba Group's goals of achieving
transportation. An integrated approach to supply chain	carbon neutrality and halving
management allows to obtain better results compared	emissions by 2030.
to separate decision support systems for each process,	
which is expressed in the strengthening of economic	
and environmental effects.	

Source: based on Intelligent Transportation Systems of Russia (2024)

3 Conclusions

Thus, the considered directions of using AI technologies in the transportation and logistics sphere contribute to improving the efficiency, safety and sustainability of transportation systems. The given examples of using AI solutions demonstrate that AI becomes an indispensable tool for optimizing transport logistics, increasing its efficiency, reliability and cost-effectiveness.

References

- 1. Pugacheva, O. V., 2023. The use of artificial intelligence in business // Actual issues of modern economic science: theory and practice: a collection of scientific articles. Issue 2. Gomel: Gomel State University named after F. Skorina, 2023, pp. 209-212.
- 2. Application of artificial intelligence in priority sectors of the economy, Innopolis, *Interindustry Technology Transfer Center*, 2023 [online] Available at: [Accessed 1 August 2024].
- 3. Artificial Intelligence in Transportation: Industries, Barriers, Prospects. *Intelligent Transportation Systems of Russia, 2024* [online] Available at: https://www.itsjournal.ru/articles/interview/iskusstvennyy-intellekt-natransporte-otrasli-barery-perspektivy/> [Accessed 4 August 2024].