IREK – AESM: Institutional Repository of Economic Knowledge

Riscurile financiare și impactul acestora asupra raportărilor financiare în contextul tehnologiilor de ma-chine learning

Show simple item record

dc.contributor.author Racolciuc, Adina-Cosmina
dc.contributor.author Ciubotariu, Marius-Sorin
dc.contributor.author Ionescu, Bogdan-Stefan
dc.date.accessioned 2025-12-10T09:55:11Z
dc.date.available 2025-12-10T09:55:11Z
dc.date.issued 2025-04
dc.identifier.uri https://irek.ase.md:443/xmlui/handle/123456789/4744
dc.description RACOLCIUC, Adina-Cosmina; Marius-Sorin CIUBOTARIU și Bogdan Ștefan IONESCU. Riscurile financiare și impactul acestora asupra raportărilor financiare în contextul tehnologiilor de ma-chine learning = Financial Risks and Their Impact on Financial Reporting in the Context of Machine Learning Technologies. Online. In: Învățământul superior contabil: provocări și soluții: Colocviu științific cu participare internațională in memoriam profesorului Viorel Ţurcanu, ediţia a 4-a, Chişinău, 14 noiembrie 2025: Culegere de teze științifice. Chişinău: SEP ASEM, 2025, pp. 71-74. ISBN 978-9975-168-57-1 (PDF). Disponibil: https://doi.org/10.53486/isc2025.19 en_US
dc.description.abstract In a European economic environment characterized by high volatility, financial uncertainty, and increasing demands for accounting transparency, the use of modern analytical tools to manage financial risks has become essential. This research explores how machine learning technologies can enhance the identification, assessment, and reporting of financial risks while increasing the credibility of accounting information. The study pursues two main objectives: (O1) to define and conceptualize financial risks and their impact on accounting reporting, and (O2) to explore machine learning as an emerging tool for predicting financial imbalances. The research methodology is based on a bibliometric analysis of the specialized literature using databases such as Web of Science, aiming to identify the main trends, authors, and research clusters in the field. The network of keywords related to financial risk management techniques was analyzed to reveal conceptual linkages and thematic evolution. The findings indicate a growing integration of machine learning approaches in financial risk diagnostics and demonstrate how these technologies contribute to enhancing transparency and predictive accuracy in accounting processes. CZU: [658.15:657.6]:004.8; JEL: G17, M41 en_US
dc.language.iso other en_US
dc.publisher SEP ASEM en_US
dc.subject financial risk en_US
dc.subject accounting reporting en_US
dc.subject risk management machine learning en_US
dc.subject artificial intelligence en_US
dc.title Riscurile financiare și impactul acestora asupra raportărilor financiare în contextul tehnologiilor de ma-chine learning en_US
dc.title.alternative Financial Risks and Their Impact on Financial Reporting in the Context of Machine Learning Technologies en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account